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Abstract—This paper deals with the use of Koiter's improved postbuckling theory in axial buckling
of integrally stiffened cylindrical panels. According to Koiter's improved theory, the postbuckling
coefficients are evaluated at the actual applied load rather than at the classical buckling load.
Substantial positive shift of the postbuckling is found which indicates that the imperfection-
sensitivity predicted by Koiter’s 1945 general theory may significantly overestimate the degrading
effects of these imperfections. Such a positive shift is especially crucial in studying mode interactions
such as local and overall buckling mode intcractions of stringer-reinforced cylindrical shells.

I. INTRODUCTION

It is now well established that the major reason for the discrepancies between theoretical
and experimental static buckling loads of thin shells is the presence of unavoidable geometric
imperfections. Koiter (1945) was the first to present a rigorous postbuckling theory which
is capable of taking into account the presence of gcometric imperfections and interactions
between buckling modes. Koiter’s theory was not well known until his thesis was translated
from Dutch into English in 1967, paving the way for a breakthrough in the theory of elastic
stability. Numerous papers were written based on Koiter’s theory as evidenced by a number
of comprehensive reviews (Hutchinson and Koiter, 1970; Budiansky and Hutchinson,
1979; Citerley, 1982; Leissa, 1985; Simitses, 1986), books (Thompson and Hunt, 1973;
Yamaki, 1984 ; Koilar and Dulacska, 1984 ; Bushnell, 1985) and IUTAM conference pro-
ceedings (Budiansky, 1974 ; Koiter and Mikhailov, 1980 ; Thompson and Hunt, 1983).

Koiter’s 1945 general theory is based on an asymptotic perturbation technique and
has several limitations. First, the general theory does not take into account the deformations
prior to buckling and this limitation was later removed by Fitch (1968). Second, it was
assumed that the shape of the imperfection is identical to that of the buckling mode
and this was addressed by Tvergaard and Needleman (1983). Third, the theory is valid
asymptotically only for sufficiently small values of the imperfection amplitude. Various
authors have extended Koiter’s theory to include random imperfections, plastic defor-
mations and general computer codes were readily available (Bauld and Satyamurthy, 1979;
Bushnell, 1985). However, the crux of the problem lies in the range of validity of the
imperfection-sensitivity curves. Based on independent upper-bound calculations of the
buckling loads of pressurized spherical shells (Hutchinson, 1967) and cylindrical shells
(Koiter, 1963; Hutchinson, 1965), it was estimated that Koiter’s 1945 general theory
predicts reasonably good results for imperfection amplitudes up to one shell thickness. The
abovementioned range of validity may be quite misleading since Koiter and Pignataro
(1976) pointed out that the general theory is valid for imperfection amplitudes up to only
a few percent of the skin thickness in the case of simultaneous buckling mode interaction
of integrally stiffened flat plates under compression.

This paper was motivated by Koiter’s remarks that the general theory of elastic stability
may be improved. Koiter (1976) was the first to point out that, **A better accuracy, however,
may be achieved for larger values of {4, — 1 and |A— 1], if each of the coefficients C, and
C, is evaluated at the actual load factor A, although we are unable to estimate the extended
range of validity; the improvement (for the local mode) seems to be the most significant
one because there is a strong dependence of C, on A for all values of the flatness parameter
which are not quite small; we recommend to evaluate both C, and C, at the actual values
of the load factor in a systematic numerical evaluation of the theory™. In the above Koiter’s
notation, 4, is the ratio of the overall buckling load divided by the local buckling load, C,
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is the transformed cocfficient of the quartic term of the overall mode and C, is related to
the quartic term of the local mode of an axially stiffened cylindrical shell under compression.
It is particularly significant to note that among the large number of publications on the
imperfection-sensitivity of structures (Khot, 1968 ; Imbert, 1971; Seide, 1974, Arbocz,
1974 ; Citerley, 1982, 1984, 1986; Yamaki, 1967, 1984), only one paper (Koiter, 1969)
involves the “quantitative calculations™ of the postbuckling coeflicients al the actual load
for shells. This is probably due to two factors: first, the researchers were unaware of such
a possible improvement of Koiter’s theory and second, the required computational eflort
to evaluate the coefficients at the actual applied load may be enormous. This paper is the
first in the open literature to employ Koiter’s “improved” stability theory to evaluate the
postbuckling coefficients at the actual loads for an integrally stiffened cylindrical panel
under compression. Particular emphasis is placed on an open cylindrical panel because this
is part of a widely used stringer-reinforced closed cylindrical shell. Further, it was shown
that accurate computations of postbuckling coefficients of these panels are essential for
studying local and overall buckling mode interactions of axially stiffened cylindrical shells
under compression (Tennyson et al., 1980 ; Hui et al., 1981 ; Hui, 1983, 1985b).

Evaluations of the postbuckling coefficients at the actual applied load rather than at
the classical buckling load were first performed by Koiter (1969) who examined the non-
lincar buckiing behavior of externally pressurized complete spherical shells. However, the
interaction between many approximately simultaneous buckling modes makes it impossible
to ascertain whether the imperfection sensitivity (or lack of it) is due to mode interaction
or to the use of the ‘“‘improved” theory. Nevertheless, it should be mentioned that the
present work is based on the elegant technique employed by Koiter in his 1969 paper.

The analysis is based on a solution of Donnell-type non-linear equilibrium and com-
patibility of a cylindrical shell. Using Koiter’s 1945 general theory, the non-linear differ-
ential equations can be written in terms of a sequence of linear differential equations for
the buckling state and the second-order fields using an asymptotic perturbation technique.
The boundary conditions for the integrally stiffened panel are obtained from the jump
conditions arising from the natural boundary conditions using energy methods. Likewise,
a sequence of linear boundary conditions is generated that is applicable to buckling and
second-order problems. The analysis is simplified by assuming that the cylindrical panels
are infinitely long, thus, permitting separation of variables and reduction of the partial
differential equations to ordinary ones. These sets of ordinary differential equations and
the boundary conditions are discretized using a central finite-difference scheme. The buck-
ling loads and the associated buckling modes are obtained using the shifted inverse power
method (Hui and Hansen, 1982). The second-order field non-homogeneous algebraic equa-
tions are solved using backward substitution. The postbuckling coefficients are computed
based on a re-formulation of Koiter’s 1945 theory by Budiansky and Hutchinson (1964).
Special care is taken to ensure that (i) the differential equations for the second-order
problem are solved by retaining the actual value of the applied load rather than evaluating
the applied load at the classical buckling load ; (ii) the postbuckling coefficients formulated
by Budiansky and Hutchinson are also evaluated at the actual applied load. This procedure
will yield the “improved” postbuckling coefficient as a function of the applied load.

A simple quadratic curve-fit of the improved imperfection-sensitivity curves is made
for the imperfection amplitude between 0 and 0.25 times the shell thickness, enabling one
to compute the improved postbuckling coefficient. In the event that the structure has stable
postbuckling behavior (that is, insensitive to imperfection), the curve-fit scheme is applied
to the initial stable postbuckling path for the amplitude of the buckling mode between 0
and 0.25 times the thickness. These improved coefficients are plotted as a function of the
flatness parameter (Koiter, 1956) and stringer parameters such as torsional rigidity, axial
stiffness, and eccentricity.

2. GOVERNING DIFFERENTIAL EQUATIONS AND CLASSICAL BUCKLING LOAD

The Donnell governing non-linear equilibrium and compatibility equations for a
cylindrical shell are (see for example, Hutchinson (1965))
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(ER? (A (W xxxx+ W yrry +2W xxyy) + (1/R)F xx
= F,yy W.xx+Exx W,YY_ZEXYWXY ey
[1/(Eh)] (EXXXX + I:,YYYY+ 2EXXYY) - (I/R)WXX = (W.XY)2 - VV,XX W Yy (2)
In the above equations, W is the out-of-plane deflection (positive outwards), F is the stress
function, X and Y are the in-plane axial and circumferential coordinates, R is the shell

radius, 4 is the skin thickness, E is Young’s modulus of the skin and ¢ = [3(1 —v?)]"/? where
vis Poisson’s ratio. Introducing the following non-dimensional quantities (g, = (2cR/h)"?)

w=Wih,  f=2F|(ER’), (xy)=(q/R)(X,Y) 3)
the governing non-linear partial differential equations become
Woaenx + W,y + 2W sy + fax = QO Ly Woxx + L axW, 0y — 2 W) 4
Soxxex oy F ey = Woxx = (20) [(W,1))* =W . &)
Koiter’s general theory of elastic stability (Koiter, 1945) was re-formulated in terms
of the mixed formulation involving the out-of-plane deflection and the stress function by

Budiansky and Hutchinson (1964). Koiter’s theory assumes that the total deflection and
the total stress function can be expressed in the asymptotic form

W, 1) = Wy, o)+ Ewi, EA) + (Ewi, E2 1) (6)
where ¢ is the amplitude of the buckling mode normalized with respect to the skin thickness,
subscript “p” refers to the pre-buckling, “I”” refers to the buckling state and “II” stands
for the second-order fields. Substituting the total deflection and stress function into the

non-linear partial differential equations and collecting the linear terms in £, one obtains the
linearized equilibrium and compatibility equations for the buckling state

Wi xxxx + wl.yyyy +2wl.xxyy +fl.xx + (za)wl.xx =0 (7)

ﬁ,xxxx + ﬁ,yyyy + zﬁ,xxyy - wl,xx = 0 (8)
where ¢ is the non-dimensional applied load (positive for compression). The dimensional

applied stress & (force per unit area) on the skin is the same as that on the stringers and ¢
is related to & by

o = GcR/(Eh) = —cf,,,. C)]
The present analysis of axially compressed stringer-reinforced cylindrical panels will
be simplified by assuming that the panels are sufficiently long such that the boundary

conditions at the two curves edges may be neglected. Thus, the buckling mode can be
written in the separable form

wi(x, 2), fi(x, 0] = [wi(9), /1(Y)] cos (Mx). (10)

Substituting the separable form of the buckling mode into the linearized equilibrium and
compatibility equations for the buckling state, one obtains

Wi (2),ypy = 2M W1 (1)), + (M * = 2M o)1 (y) = M fi(y) = 0 (In

ﬁ(y).yyyy_2M2fi(y).yy+M4ﬁ(y)+M2wl(y) = 0. (]2)
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This paper deals with the local buckling and postbuckling behavior of integrally
stiffened closed cylindrical shells where the deformations occur primarily in the skin between
adjacent stringers. At the stringer edge, the four jump conditions with respect to the
axial, circumferential and the out-of-plane displacements U, ¥, W and the slope W , are
respectively (Tvergaard, 1973 ; Hui, 1983)

QU {N =N+ (EA) 6] —eW i+ (1/2) () (W) x} = (13)

OVY{N; =Ny —(EJ) (V xxxx)} =0 (14)

W) {(=D) (W yyy~ W yyy)+eNixx— ELW yxxx + NS Wiy} =0 (15
OW. ) {(D) (Wy = Wiy) (G (W ixr) + (€)' NS Wiy +(e)’ Ny Wiy} = 0.

(16)

The above jump conditions are presented in dimensional form for clarity purposes; the
membrane stress resultants are related to the stress function by

NX=EYY¥ Ny'_"EXXv ny‘= '_F‘.XY' (17)

Further, E, is Young’s modulus of the stringer, A4, is the cross-sectional area of any one
stringer, e, is the stringer eccentricity measured from the skin middle surface to the centroid
of the stringer, /; is the out-of-plane moment of inertia of a stringer with respect to a
circumferential line passing through the stringer centroid, J, is the in-plane tangential
moment of inertia of a stringer with respect to a radial line passing through the stringer
centroid, D is the flexural rigidity, and G, J; is the torsional rigidity of the stringer (Hui, 1983).
Further, superscript “+ " denotes the side of the stringer in the positive circumferential y-
direction, while ““ —"" denotes the other side of the stringer, and y is measured from any one
stringer. The axial force applied at the stringer centroid is defined to be

NI = (E4,) (&) (18a)

where the longitudinal strain at the stringer centroid ¢, is related to the longitudinal strain
at the skin middle surface stringer position &; by

& = & —e, Wiy +(1/2) (&) (W ky)’ (18b)

where
&x = LL/(ER](F vy —vF xx). (19)
Assuming a membrane pre-buckling state and that the stringer does not bend out of plane

in the buckling state (W 'yx = 0), the axial force applied at the stringer centroid can be
expressed as

NS = NP+EN+EPNY. (20

These assumptions are acceptable since the cylindrical panels being considered are infinitely
long. Further, N?, N! and N are defined to be

NP = —E AG/E
N; = (E:4,) [(FEYY-Vfox)/(Eh)] (21)
N = (EA) {[(Fif vy = vFLx)/(EM) — e, Wil xx + (1/2) (6)* (WiTxy)?}.
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The four boundary conditions at the stringer edge for the buckling state are obtained
from the jump conditions by substituting the asymptotic expression (eqn (6)) into the jump
conditions and then collecting the linear terms in £. These conditions can be simplified by
employing the physical requirements that the displacements of the buckling mode U}, V,
and W, are either symmetric or anti-symmetric functions with respect to the stringer edge.
Doing so yields

fly=0=0, fi,(=00=0, w(y=0)=0. (22-24)

The remaining jump condition with respect to W,, can be written as (using
Wivy—=Wiyy =2Wyy)

(2D)WI.YY(Xa Y= 0)+[Gsfs—(EsAs59s2/E)] Wl.XXY(Xa Y= 0) = 0. (25)

Making use of separation of variables, this jump condition can be written in non-dimen-
sional form

(M?y,/2)w,,(y = 0)=w,,,(y = 0) = 0. (26)

The non-dimensional torsional-rigidity ratio 7, is defined to be (Hui ez al., 1981 ; Hui, 1983)
¥s = [90Go i /(DR)] = (Eat,) (es/h)* (8mc 1 c?0) @7

where the second term is usually small compared with the first term. Further, E, is the ratio
of Young’s modulus of stringers to that of the skin, o, is the area ratio, ¢, is a non-

dimensional negative quantity being a function of the applied load (Hui, 1983) and @ is the
flatness parameter defined by Koiter (1956) such that

E,a, = (E,/E)[A,/(Bh)] (28a)
¢ =0o(l+a)[—h/(RA))/(1+ E,a) (28b)
0 = qoB/(2nR) (29)

where E,/E is the ratio of Young’s modulus of the stringer to that of the skin, and B is the
curved distance between adjacent stringers. Finally, the symmetry conditions at the mid-
panel, defined to be the mid-point between adjacent stringers, are (Koiter, 1956 ; Stephens,
1971)

wl.y(y = 7[9) = 0, wl.yy)'(y = 7":9) = O’ ﬁ.y(y = 7'59) = 0’ ﬁ‘yyy(y = 7t9) =0. (30)

These two coupled ordinary differential equations for the buckling state are discretized
using a central finite-difference scheme and the resulting eigenvalue problem is solved using
the shifted inverse power method (Hui and Hansen, 1982).

3. SECOND-ORDER FIELDS

This section aims to derive the governing equilibrium and compatibility equations for
the second-order fields and the associated boundary conditions. These partial differential
equations are reduced to two sets of ordinary differential equations by using the separation
of variables. The governing differential equations and the boundary conditions are dis-
cretized using a central finite-difference scheme and the resulting non-homogeneous
algebraic equations are solved using backward substitution. The second-order fields are
needed to compute the b coefficients (Budiansky and Hutchinson, 1964) of a structure which
exhibits symmetric postbuckling behavior.
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Substituting the asymptotic expansion (eqn (6)) into the governing non-linear differ-
ential equations and collecting the second-order terms involving &2, the equilibrium and
compatibility equations for the second-order fields are

wl[,xxxx + Wll,yyyy + zwll,xxyy +ﬂl.xx + 2awll.xx = (20) (ﬁ,yywl,xx +fl,xxwl.yy - 2fl.xywl.xy)
@31

ﬁl,xxxx + ﬁl.yyyy + 2ﬁl.xxyy - wll,xx = (2C) [(wl.xy)2 - wl.xxwl.yy]' (32)

Substituting the separable form of the buckling mode w,(x, ) and fi(x, y) into the right-
hand side of the above partial differential equations, it is apparent that the second-order
field may also be written in the separable form (Stephens, 1971 ; Hui et al., 1981)

wi(x,y) = w(y)+wa(y) cos 2Mx)

Su(x,p) = f*(D)+ fa(y) cos 2Mx). 9

The first set of ordinary differential equations for the (w*, f*) problem is
WDy = =M LLGIMON,, (34)
S*D oy = (M?(2) [W1(9)*),- (3%

The second set of ordinary differential equations for the (w,, fa) problem is

WA (D) ppy —8M WA (D), + (16M* = 8M 0w, () —4M /o (y)
= (= M) [LD) Wi+ AW, = 26(0),wi(1),] (36)

TaD) sy —8Mfa (1), + 16M fu () +4M*wa(y) = (= M?) {[m(D), ] = wi(DIW (D), }-
37

The boundary conditions at the edge of the stringer for the second-order fields are
obtained by substituting the asymptotic expansion (eqn (6)) into the jump conditions
and then collecting the terms which involve ¢2. Since the second-order displacements are
symmetric with respect to the edge of the stringer (Stephens, 1971), the two jump conditions
with respect to Wy and V are not applicable and should be replaced by, respectively

wi,(x,y=0)=0 (38)
vu(x,y=0)=0. 39)

The first condition implies
wh(y=0)=0, wa,(y =0)=0. (40,41)

Solving for V yyx in the Donnell non-linear strain—displacement relations, and then making
use of the asymptotic expansion and collecting terms which involve 2, one obtains

(EB),Y_z(s}rly),X = Wi xWixr—Vixx— WixxWi,y— Wi x Wi xr. 42)

Evaluating this expression at the edge of the stringer, the zero second-order circumferential
displacement at the stringer edge condition can be written in terms of the stress function
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S (%Y =0+ Q2+9) fi(x,y = 0) =0 (43)
which implies
Tasy(y = 0)=4M*24+v) fo,(y = 0) = 0. (44)

Employing the antisymmetry argument of the shear stress (N, — N, = 2N3, ), the jump
condition with respect to U becomes

2N+ (EA) {[1/(ER) (Fil vy —VFi xx) — e Wik xx + (1/2) () (Wixy) ) x = 0 (45)
or in non-dimensional form

_2ﬁl,xy(y = O)+ (27:6) (Enas) {fil.yy(y = 0)~vfil.xx(y = 0)
—2c(e,/Mw x(y = 0)+2¢*(e,/h)* (h/R) [Wi0,(y = 0))*} . = 0. (46)

Using the separable form of the second-order field, the boundary condition with respect to
U for the (wa, f4) problem becomes

(4M) fa,(y = 0)+ (2n0) (Eno) { — 2M[i,,(y = 0)—8vM fx(y = 0)
—16cM>(e,/mwa(y = 0)+2c* M (e,/h)* (h[R) [w,,,(y = O))*} = 0. (47)

Finally, upon using the condition Wy} yyy— Wi yyy = 2Wji yyy and the jump condition
with respect to U that Ny = 2F}} ,,, one obtains

(=2D)W i yyy +(e) QF i xr) x — EJ Wi xxxx+ AGWiixxy = 0 (48a)

or in non-dimensional form

[‘]3/(202)] [— wll,yyy (y = 0) + (zces/h)ﬁl.xxy (y = 0)]
~ (210B,(q0) (RIAY* Wit xxs (¥ = 0)+ (47800,/90) (RI)* Wyt o (y = 0) = 0 (48b)

where the out-of-plane bending stiffness ratio f; is defined as E, /(D B). Thus, one obtains
wh,(y=0)=0 (49)

[93/Q2c) [ = Wa (¥ = 0)—=8M c(es/h) fa, (¥ = 0)] = [(32M *n6B,/q0) (R[h)’
x (16M *noa,/q0) (R/h)*Iwa(y = 0) = 0. (50)

The boundary conditions for the second-order fields at the mid-panel are similar to those
for the buckling form

wll,y(x’y = 7[0) = 0’ wll.)’}’)‘('x’y = ne) = 0

(5D
fll,y(xay = 7t0) = 0’ ﬁl.yy,v(x?y = 7[6) =0.

It can be seen that the above boundary conditions are not sufficient to solve the (w*, f*)
problem. Note that it is not necessary to solve for f*(y) explicitly since it will be shown
that the postbuckling coefficient depends only on f*(y),,. Thus, an additional condition
of zero average longitudinal second-order stress needs to be enforced in the form
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B L L
f J Fyyy dX dY+(EA)) f_ [er —(e)Whax+(1/2) (es)z(Wx,xy)z] dX =10

Y=0JX=0

(52)

or in non-dimensional form

2n0 [x,
J J‘ {fll,yy + (Enas) (flT.yy - vflT.xx) + (ZCEnas)

y=0,Jx=0

X [~ (es/h) (Wit )+ (es/h)*(ch/R) (wil,,)*]} dx dy = 0. (53)

Substituting the separable form for wy,(x,y) and fj(x,») into the above equation and
integrating over the length analytically, one obtains

2xf
j Oy dy+ 2n8) (Ena) [3,(y=0)+T=0 (54)

where
T = (n6) (2c*E, ) (e,/h)* (B RYM *[w, ,(y = O)}*. (55)
Integrating eqn (35) twice with respect to y, one obtains

S*O)yy = (M1 WD)+ (56)

which implies f%,(y = 0) = c,. Substituting f*(y),, from eqn (56) into eqn (54), the
constant of integration ¢, can be obtained from

2r0

(@nb) (1 + En) (co) = (— M?[2) L . [wi(»)]* dy—T. (57)

The above sets of ordinary differential equations and the boundary conditions are sufficient

to determine w*(y), f*(»),,» wa(y) and fa(y) which are necessary to compute the post-
buckling coefficients.

4. KOITER’S IMPROVED POSTBUCKLING COEFFICIENTS

According to Koiter’s postbuckling theory which was re-formulated by Budiansky and
Hutchinson (1964), the present symmetric single-mode structure is sensitive to the presence
of unavoidable geometric imperfection if the postbuckling coefficient 4 is negative, whereas
the structure is not sensitive to imperfection for a positive b coefficient. The extent of
imperfection-sensitivity depends on the magnitude of coefficient . This section aims to
derive the b coefficients for the integrally stiffened cylindrical panels as a function of the
buckling mode w,(x, y), fi(x, y) and the second-order fields wy(x, y), fi1(x, y) and the applied
axial compressive load o.

For a single-mode structure which exhibits symmetric postbuckling behavior, the
equilibrium path of an imperfect system is specified by

b&’ +[1—(a/o)} = (o/0.)E. (58)

In the above, o, is the classical buckling load of the perfect system, & is the amplitude of
the buckling mode normalized with respect to the out-of-plane buckling deflection at the
mid-panel, and £ is the amplitude of the geometric imperfection which is taken to be of the
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same shape as the buckling mode. The imperfection-sensitivity curve is governed by (o* is
the buckling load of an imperfect system)

21— (a*/o.)]"*

=3

(59)

which is valid only if b is negative. Equations (58) and (59) remain valid within Koiter’s
improved postbuckling theory except that coefficient 4 is a function of the applied load.

The postbuckling coefficient b for an integrally stiffened cylindrical panel under com-
pression is defined to be (Hutchinson and Amazigo, 1967 ; Tvergaard, 1973)

b= Q20+ Q2%+ Q)10 (60)

where (L is the length of the shell)

B L
Ql = J‘ J [E.)’)’(Wl,x WH.X)+I:I.XX(WI.YWH. Y)_E.XY( Wl,X lel.Y

Y=0JX=0

L

+ Wiy Wiyl dXdY'*'f NiLy (U, Uy) dX  (61)

X=0

B L
Q2 =j; OL 0[Fu.yy(Wx.x)2+Fu.xx(W|,y)2—2Fu.xy(W|.an_y)] dxdy (62

O = J N/Ly(U) dx (63)

X =

L

5 (L
Qo= f J. . (hé) (Wh.x)* dX dY+I |N?IL2(Uy) dX. (64)
=0

Y=0 X

In the above expressions, N?, N! and N are defined in eqns (21) and the quantities

5(Uy) and LY, (Uy, Uy) are obtained from eqn (18b) such that (the superscript “r” refers
to the reinforced-stringer)

& = Ly(U)+(1/2)L3y(V) (65)

where
1(U) = Ux—e. Wi (66)
2(U) = (W5 +(e) (Wi (67)

Using Budiansky-Hutchinson’s notation, one obtains, upon substituting the asymptotic
expansion W = (W, +E2W),

Ly(Ui+ Uy) = Ly(U)+ Ly(Uy) +2L5 (Us, Up). (68)

Assuming that the stringer does not bend at the buckling state (so that Wy = 0) and the
stringer does not twist at the second-order state (Wi xy = 0) one obtains

Ly(Uy) = (es)z(for)z, 1(Uy, Uy) = 0. (69, 70)

Making use of the asymptotic expansion (eqn (6)) and integrating the expressions in the
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axial direction analytically, @, Q1,, Q2 and O, can be written in non-dimensional form
with the common factor Eh*x,M?/R (note that x, = g,L/R) such that

2r0

Q= (Eh"XoMz/R)f {2 /1) wa(y)

=0

=iwi (), [2W*(p),, + (1 Bwa (), 1= 11(D) Wi (y)
X [(12w*(p), — (Bwa (D), 1= (112) i), w1 (1), wa (1)) dy (1)

2n0
Qu = (Eh"XoMZ/R)LO ML S* (), — (1/4) fa (D) 1]

— W OLEAG) =W, [a(),} dy  (72)
Qu = (Eh*xoM?|R) (n0E,a,) (4ch/R) (e,/h)*[wy, (y = O))*

x {1125y = 0)=(1/4) fa,, (¥ = O)= M vfu(y = 0)
—Q2cMe/hywa(y = 0)+ (3M?/4) (*h/R) (es/h) (w1, (y = O)F*}  (73)

2n6
Qo = (Eh*xoM?/R) (o/c) {(1/2)j wi()? dy+(2cE,anbh/R) [y, (y = 0))* } (74)

The circumferential integrations are performed using Simpson’s rule with approximately
101 integration points between adjacent stringers. It should be noted that Q,, and the
second term in the Q are usually small compared with the rest of the terms in the expression
for coefficient b.

5. DISCUSSION OF RESULTS

The flatness parameter 6 is the most important parameter which characterizes the
geometry of the structure. It combines the radius-to-thickness ratio and the width-to-radius
ratio into one parameter. The present imperfection-sensitivity problem depends also on the
cross-sectional area ratio E,a,, the torsional-rigidity ratio y, and to a smaller extent on the
eccentricity ratio e,/h. The length of the cylindrical panel is infinite and Poisson’s ratio is
assumed to be 0.3.

Figure 1(a) shows a graph of the classical buckling load vs the flatness parameter for
long cylindrical panels under axial compression. For a given value of 8, the torsional-
rigidity of the stringer may considerably raise the classical buckling load. The y, = 0 curve
corresponds to simply-supported cylindrical panels while y, > 100 corresponds to clamped
edges. Note that the classical buckling load is approximately independent of the area ratio
and the eccentricity ratio and these two parameters are set to zero in this figure.

Figure 1(b) shows the corresponding postbuckiing coefficient 4 where E, 2, = 0 and
e,f/h = 0. For simply-supported cylindrical panels, the coefficient b is positive for
0 < 8 < 0.648 while it is negative for 0.648 < 0 < 1.0 and the transitional value 0.648 agrees
with that obtained by Koiter (1956). The “improved” b coefficient is also plotted and it
appears that the imperfection sensitivity of the cylindrical panels predicted by the more
accurate “improved” theory may be far less serious than that predicted using Koiter’s 1945
general theory. The general curve and the improved curves practically coincide if the
coefficient turns out to be positive. Similar curves for the clamped cylindrical panels are
also plotted. Substantial positive shifts of the postbuckling coefficients b are found using
Koiter’s improved theory and this conclusion appears to be in qualitative agreement with
experiments (Tennyson et al., 1980). Typical imperfection-sensitivity curves are presented
in Fig. 2 using Koiter’s 1945 general theory and Koiter’s improved theory. The results
based on a least square curve-fit are also presented.
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Fig. 1(a). Classical buckling load vs the flatness parameter for integrally stiffened cylindrical panels
under compression.
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Fig. 1(b). The corresponding postbuckling coefficients b vs the flatness parameter.

As an example problem, equally-spaced integrally-stiffened closed cylindrical shells are
chosen where the local buckling and postbuckling behavior of the panel between adjacent
stringers is of interest. The cross-sectional shape of each stringer is rectangular and the
following parameters are held fixed (Byskov and Hutchinson, 1977 ; Hui ez al., 1981 ; Hui,
1983)

E, =10, =07 R/h=2850, v=03, go=52.998. 75

As the number of stringers increases (decreases), the stringer eccentricity decreases
(increases) such that the area E,o, and the tangential width of the stringer remains constant.
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Fig. 2. Typical inperfection-sensitivity curves using Koiter's 1945 general theory, Koiter’s improved
postbuckling theory and the curve-fit results.
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Fig. 3. Postbuckling coefficients b vs the flatness parameter for the example problem.

Doing so, the flatness parameter 8, the eccentricity ratio e,/k, and the torsional rigidity ratio
y, are permitted to vary. The postbuckling coefficients b predicted using Koiter’s 1945
general theory and Koiter’s improved theory are plotted in Fig. 3. The transitional value
of coefficient b appears to be approximately 0.86. It may be appreciated that the reduction
of the imperfection-sensitivity (as measured by the positive shift of coefficient ) may be
quite significant. Detailed numerical resuits are presented in Table 1.

6. CONCLUSIONS

The imperfection-sensitivity behavior of integrally stringer-reinforced cylindrical
panels under compression has been investigated. It is found that the positive shift of the
postbuckling coefficient may be quite significant due to the evaluation of these coefficients
at the actual applied load rather than at the classical buckling load. The positive shift is
especially apparent for larger values of the flatness parameter. It is strongly recommended
that Koiter’s “improved” postbuckling theory be used unless coefficient b turns out to be
positive or the computational effort involved becomes prohibitive. The present results show
that virtually “all” the imperfection-sensitivity curves predicted using Koiter’s general
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Table 1. Parameter variations of equally-spaced integrally stiffened cylindrical panels
under axial compression

No. of
stringers (7 2M0 ¥, a, b b (improved)
100 0.52999 1472 37.58 3.1264 0.39183 0.39810
94 0.5638 1.4787 40.79 2.7936 0.36739 0.37264
90 0.5889 1.4845 43.51 2.5858 0.34698 0.35142
86 0.6163 1.4911 46.19 2.3885 0.32196 0.32550
82 0.6463 1.4995 49.2 2.2030 0.29160 0.29420
77 0.6883 1.5131 53.36 1.9872 0.24400 0.24539
72 0.7361 1.5323 58.16 1.7913 0.18323 0.18352
68 0.7794 1.5533 62.74 1.6491 0.12282 0.12254
64 0.8281 1.5821 67.34 1.5209 0.05052 0.05016
60 0.8833 1.6231 72.81 1.4075 -0.03402 —-0.01092
55 0.9636 1.7009 80.52 1.2877 —0.15429 —0.09143
52 1.0192 1.7690 85.75 1.2281 —0.23094 —0.14399
50 1.0600 1.8265 89.66 1.1935 —0.28215 —0.17925
47 1.1276 1.9345 95.72 1.1489 -0.35734 -0.23174
45 1.1777  2.0233  100.58 1.1240 —0.40544 —0.26552
42 1.2619  2.1842 108.14 1.0928 —0.47405 -0.31401
40 1.325 23115 113.86 1.0759 —0.51758 —0.34455

theory reported in the open literature tend to overestimate the degrading effects of imper-
fections. The extent of such an overestimation will, of course, depend on the particular
instability problem under consideration. Extension of the present work to laminated
cylindrical shells (such as those examined by Zhang and Matthews (1983) and Hui
(1985a) is in progress. Application of Koiter’s improved theory to buckling of beams
on elastic foundations (Hui, 1986, 1987) will be published in separate papers.
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